Department of Mathematics

Fall 2024

(**Disclaimer**: Be advised that some information on this page may not be current due to course scheduling changes. Please view either the **UH Class Schedule** page or your Class schedule in **myUH** for the **most current/updated information**.)

(Updated- 08/07/24)

GRADUATE COURSES - FALL 2024

SENIOR UNDERGRADUATE COURSES

Course/Section	Class #	Course Title	Course Day/Time	Rm #	Instructor
Math 4310-01	14844	Biostatistics	MWF, 10—11AM	S 102	D. Labate
Math 4315-01	21252	Graph Theory with Applications	TTh, 2:30—4PM	S 116	K. Josic
Math 4320-01	11469	Intro. To Stochastic Processes	TTh, 11:30AM—1PM	AH 301	W. Ott
Math 4322-02	15451	Intro. to Data Science and Machine Learning	TTh, 11:30AM—1PM	SEC 204	C. Poliak
Math 4323-01	15420	Data Science and Statistical Learning	MWF, 10—11AM	SEC 104	W. Wang
Math 4331-02	12754	Introduction to Real Analysis I	MWF, 9—10AM	SEC 201	M. Nicol

Math 4335-01	14029	Partial Differential Equations I	Asynchronous/On Campus Exams	Online	W. Fitzgibbon
Math 4339-02	14959	Multivariate Statistics	TTh, 1—2:30PM	SEC 201	C. Poliak
Math 4350-01	21272	Differential Geometry I	MW, 1—2:30PM	AH 301	M. Ru
Math 4364-01	13125	Intro. to Numerical Analysis in Scientific Computing	MW, 4—5:30PM	SEC 206	T. Pan
Math 4364-02	15232	Intro. to Numerical Analysis in Scientific Computing	MWF, 10—11AM	CBB 214	M. Zhong
Math 4366-01	21271	Numerical Linear Algebra	TTh, 11:30AM—1PM	SEC 201	J. He
Math 4377-04	12756	Advanced Linear Algebra I	TTh, 10—11:30AM	AH 108	G. Heier
Math 4388-01	12193	History of Mathematics	Asynchronous/ On Campus Exams	N/A	S. Ji
Math 4389-01	11873	Survey of Undergraduate Mathematics	MWF, 11AM—Noon	S 114	V. Climenhaga

GRADUATE ONLINE COURSES

Course/Section	Class #	Course Title	Course Day & Time	Instructor
Math 5310-01	17219	History of Mathematics	Asynchronous/On-campus Exams; Online	S. Ji
Math 5331-01	18216	Linear Algebra w/Applications	Asynchronous/On-campus Exams; Online	G. Etgen
Math 5333-01	17217	Analysis	Asynchronous/On-campus Exams; Online	S. Ji
Math 5382-01	15289	Probability	Asynchronous/On-campus Exams; Online	A. Török
Math 5397-01	21236	Partial Differential Equations	Asynchronous/On-campus Exams; Online	W. Fitzgibbon

GRADUATE COURSES

Course/Section	Class #	Course Title	Course Day & Time	Rm #	Instructor
Math 6302-01	11470	Modern Algebra I	MWF, 10—11AM	F 154	A. Haynes
Math 6308-04	12757	Advanced Linear Algebra I	TTh, 10—11:30AM	AH 108	G. Heier
Math 6312-02	12755	Introduction to Real Analysis	MWF, 9—10AM	SEC 201	M. Nicol
Math 6320-01	11497	Theory of Functions of a Real Variable	TTh, 11:30AM—1PM	F 154	B. Bodmann
Math 6322-01	17218	Function Complex Variable	MWF, 11AM—Noon	F 154	M. Nicol
Math 6326-01	18238	Partial Differential Equations	MWF, 9—10AM	F 154	G. Jaramillo
Math 6342-01	11498	Topology	MWF, Noon—1PM	S 114	V. Climenhaga
Math 6360-01	16277	Applicable Analysis	TTh, 1—2:30PM	S 101	B. Bodmann
Math 6366-01	11499	Optimization Theory	TTh, 4—5:30PM	F 154	N. Charon
Math 6370-01	11500	Numerical Analysis	TTh, 2:30—4PM	SEC 201	A. Quaini
Math 6374-01	18218	Numerical Partial Differential Equations	TTh, 8:30—10AM	F 154	L. Cappanera
Math 6382-02	14094	Probability	TTh, 1—2:30PM	F 154	R. Azencott
Math 6397-01	21255	Python for scientific computation	TTh, 10—11:30AM	AH 301	I. Timofeyev
Math 6397-03	21468	Spatial Statistics	TTh, 1—2:30PM	S 132	M. Jun
Math 7320-01	21254	Functional Analysis	TTh, 4—5:30PM	F 162	M. Kalantar
Math 7350-01	18221	Geometry of Manifolds	MW, 1—2:30PM	C 118	Y. Wu
Math 7397-01	21253	Numerical Linear Algebra -Data	TTh, 11:30AM—1PM	S 119	M. Olshanskii

MSDS Courses

(MSDS Students Only - Contact **Ms. Callista Brown** for specific class numbers)

Course-Section	Class #	Course Title	Course Day & Time	Rm #	Instructor
Math 6350-01	Not shown to students	Statistical Learning and Data Mining	MW, 2:30—4PM	SEC 203	J. Ryan
Math 6357-01	Not shown to students	Linear Models & Design of Experiments	MW, 1—2:30PM	SEC 204	W. Wang
Math 6358-02/03	Not shown to students	Probability Models and Statistical Computing	F, 1—3PM	CBB 108	C. Poliak
Math 6380-01/02	Not shown to students	Programming Foundation for Data Analytics	F, 3—5PM (F2F)/Synchronous/On-campus Exams	CBB 108	D. Shastri

SENIOR UNDERGRADUATE COURSES

	Math 4310 - Biostatistics		
Prerequisites	Prerequisites: MATH 3339 and BIOL 3306		
llext(s):	ext(s): "Biostatistics: A Foundation for Analysis in the Health Sciences, Edition (TBD), by Wayne W. Daniel, Chad L. Cross. ISBN: (TBD)		
Description	Statistics for biological and biomedical data, exploratory methods, generalized linear models, analysis of variance, cross- sectional studies, and nonparametric methods. Students may not receive credit for both MATH 4310 and BIOL 4310.		

{back to Senior Courses}

Math 4315 - Graph Theory with Applications

Prerequisites:	MATH 3325 or MATH 3336 and three additional hours at the MATH 3000-4000 level.
Text(s):	ТВА
Description:	Introduction to basic concepts, results, methods, and applications of graph theory.

	Math 4320 - Intro to Stochastic Processes
Prerequisites	:: MATH 3338
Text(s):	 An Introduction to Stochastic Processes, by Edward P. C. Kao, Dover 2019, Duxbury Press, 1997; ISBN 9780486837925 An Introduction to Probability with Mathematica, by Edward P. C. Kao, World Scientific, May 2022; ISBN: 9789811246784
	Catalog Description: We study the theory and applications of stochastic processes. Topics include discrete-time and continuous-time Markov chains, Poisson process, branching process, Brownian motion. Considerable emphasis will be given to applications and examples.
Description:	Instructor's description : This course provides a overview of stochastic processes. We cover Poisson processes, discrete- time and continuous-time Markov chains, renewal processes, diffusion process and its variants, marttingales. We also study Markov chain Monte Carlo methods, and regenerative processes. In addition to covering basic theories, we also explore applications in various areas such as mathematical finance.
	Syllabus can be found here: https://www.math.uh.edu/~edkao/MyWeb/doc/math4320_fall2022_syllabus.pdf

{back to Senior Courses}

	Math 4322 - Introduction to Data Science and Machine Learning
Prerequisite	es: MATH 3339
Text(s):	While lecture notes will serve as the main source of material for the course, the following book constitutes a great reference: "An Introduction to Statistical Learning (with applications in R)" by James, Witten et al. ISBN: 978-1461471370 "Neural Networks with R" by G. Ciaburro. ISBN: 978-1788397872

	Course will deal with theory and applications for such statistical learning techniques as linear and logistic regression, classification and regression trees, random forests, neural networks. Other topics might include: fit quality assessment, model validation, resampling methods. R Statistical programming will be used throughout the course.
	Learning Objectives: By the end of the course a successful student should:
Description:	 Have a solid conceptual grasp on the described statistical learning methods. Be able to correctly identify the appropriate techniques to deal with particular data sets. Have a working knowledge of R programming software in order to apply those techniques and subse- quently assess the quality of fitted models. Demonstrate the ability to clearly communicate the results of applying selected statistical learning methods to the data. Software: Make sure to download R and RStudio (which can't be installed without R) before the course starts. Use the link https://www.rstudio.com/products/rstudio/download/ to download it from the mirror appropriate for your platform. Let me know via email in case you encounter difficulties.
	Course Outline : Introduction: What is Statistical Learning?
	Supervised and unsupervised learning. Regression and classification. Linear and Logistic Regression. Continuous response: simple and multiple linear regression. Binary response: logistic regression. Assessing quality of fit. Model Validation. Validation set approach. Cross-validation. Tree-based Models. Decision and regression trees: splitting algorithm, tree pruning. Random forests: bootstrap, bagging, random splitting. Neural Networks. Single-layer perceptron: neuron model, learning weights. Multi-Layer Perceptron: backpropagation, multi-class discrimination

{Top of page}

Math 4323 - Data Science and Statistical Learning

Prerequisites:MATH 3339

Гext(s):	Intro to Statistical Learning. ISBN: 9781461471370
	Theory and applications for such statistical learning techniques as maximal marginal classifiers, support vector machines, K-means and hierarchical clustering. Other topics might include: algorithm performance evaluation, cluster validation, data scaling, resampling methods. R Statistical programming will be used throughout the course.

Γ

{back to Senior Courses}

	Math 4331 - Introduction to Real Analysis I
Prerequisites	MATH 3333 . In depth knowledge of Math 3325 and Math 3333 is required.
Text(s):	Real Analysis, by N. L. Carothers; Cambridge University Press (2000), ISBN 978-0521497565
Description:	This first course in the sequence Math 4331-4332 provides a solid introduction to deeper properties of the real numbers, continuous functions, differentiability and integration needed for advanced study in mathematics, science and engineering. It is assumed that the student is familiar with the material of Math 3333, including an introduction to the real numbers, basic properties of continuous and differentiable functions on the real line, and an ability to do epsilon-delta proofs.
	Topics : Open and closed sets, compact and connected sets, convergence of sequences, Cauchy sequences and completeness, properties of continuous functions, fixed points and the contraction mapping principle, differentiation and integration.

{back to Senior Courses}

Math 4335 - Partial Differential Equations I		
	Prerequisites:	MATH 3331 or equivalent, and three additional hours of 3000-4000 level Mathematics. Previous exposure to Partial Differential Equations (Math 3363) is recommended.
	lext(s):	"Partial Differential Equations: An Introduction (second edition)," by Walter A. Strauss, published by Wiley, ISBN-13 978- 0470-05456-7

Description:	Description :Initial and boundary value problems, waves and diffusions, reflections, boundary values, Fourier series.
	Instructor's Description: will cover the first 6 chapters of the textbook. See the departmental course description.

{back to Senior Courses}

	Math 4339 - Multivariate Statistics		
Prerequisites:	MATH 3349		
	- Applied Multivariate Statistical Analysis (6th Edition), Pearson. Richard A. Johnson, Dean W. Wichern. ISBN : 978- 0131877153 (Required)		
	- Using R With Multivariate Statistics (1st Edition). Schumacker, R. E. SAGE Publications. ISBN : 978-1483377964 (recommended)		

Course Description: Multivariate analysis is a set of techniques used for analysis of data sets that contain more than one variable, and the techniques are especially valuable when working with correlated variables. The techniques provide a method for information extraction, regression, or classification. This includes applications of data sets using statistical software.

Course Objectives:

- Understand how to use R and R Markdown
- Understand matrix algebra using R
- Understand the geometry of a sample and random sampling
- Understand the properties of multivariate normal distribution
- Make inferences about a mean vector
- Compare several multivariate means
- Description:
 Identify and interpret multivariate linear regression models

<u>Course Topics:</u>

- Introduction to R Markdown, Review of R commands (Notes)
- Introduction to Multivariate Analysis (Ch.1)
- Matrix Algebra, R Matrix Commands (Ch.2)
- Sample Geometry and Random Sampling (Ch.3)
- Multivariate Normal Distribution (Ch.4)
- MANOVA (Ch.6)
- Multiple Regression (Ch.7)
- Logistic Regression (Notes)
- Classification (Ch.11)

{back to Senior Courses}

[lop of page]		
	Math 4350 - Differential Geometry I	
Prerequisites:	MATH 2415 and six additional hours of 3000-4000 level Mathematics.	
Text(s):	ТВА	

		Curves in the plane and in space, global properties of curves and surfaces in three dimensions, the first fundamental form,	
Descr	Description:	curvature of surfaces, Gaussian curvature and the Gaussian map, geodesics, minimal surfaces, Gauss' Theorem Egregium,	
		The Codazzi and Gauss Equations, Covariant Differentiation, Parallel Translation.	

	Math 4364-01 (13125) - Introduction to Numerical Analysis in Scientific Computing	
Prerequisites:	MATH 3331 or MATH 3321 or equivalent, and three additional hours of 3000-4000 level Mathematics	
	*Ability to do computer assignments in FORTRAN, C, Matlab, Pascal, Mathematica or Maple.	
Text(s):	Numerical Analysis (9th edition), by R.L. Burden and J.D. Faires, Brooks-Cole Publishers, 9780538733519	
Description:	This is an one semester course which introduces core areas of numerical analysis and scientific computing along with basic themes such as solving nonlinear equations, interpolation and splines fitting, curve fitting, numerical differentiation and integration, initial value problems of ordinary differential equations, direct methods for solving linear systems of equations, and finite-difference approximation to a two-points boundary value problem. This is an introductory course and will be a mix of mathematics and computing.	

{back to Senior Courses}

	Math 4364-02 (15232) - Introduction to Numerical Analysis in Scientific Computing	
	MATH 3331 or MATH 3321 or equivalent, and three additional hours of 3000-4000 level Mathematics	
Prerequisites:	*Ability to do computer assignments in FORTRAN, C, Matlab, Pascal, Mathematica or Maple.	
Text(s):	Instructor's notes	

Description:	This is an one semester course which introduces core areas of numerical analysis and scientific computing along with basic themes such as solving nonlinear equations, interpolation and splines fitting, curve fitting, numerical differentiation and integration, initial value problems of ordinary differential equations, direct methods for solving linear systems of equations, and finite-difference approximation to a two-points boundary value problem. This is an introductory course and will be a mix of mathematics and computing.	
	equations, and finite-difference approximation to a two-points boundary value problem. This is an introductory course	

	Math 4366 - Numerical Linear Algebra	
Prerequisites:	MATH 2318, or equivalent, and six additional hours of 3000-4000 level Mathematics.	
Text(s):	ТВА	
Description	Conditioning and stability of linear systems, matrix factorizations, direct and iterative methods for solving linear systems, computing eigenvalues and eigenvectors, introduction to linear and nonlinear optimization.	

{back to Senior Courses}

	Math 4377 - Advanced Linear Algebra I	
Prerequisites	MATH 2331, or equivalent, and a minimum of three semester hours of 3000-4000 level Mathematics.	
Text(s):	Linear Algebra, 4th Edition, by S.H. Friedberg, A.J Insel, L.E. Spence,Prentice Hall, ISBN 0-13-008451-4	
	Catalog Description : Linear systems of equations, matrices, determinants, vector spaces and linear transformations, eigenvalues and eigenvectors.	
	Instructor's Description : The course covers the following topics: vector spaces, subspaces, linear combinations, systems of linear equations, linear dependence and linear independence, bases and dimension, linear transformations, null spaces, ranges, matrix rank, matrix inverse and invertibility, determinants and their properties, eigenvalues and eigenvectors, diagonalizability.	

	Math 4383 - Number Theory and Cryptography TBD	
Prerequisites:	MATH 3330 and MATH 3336	
Text(s):	Refer to the instructor's syllabus	
	Description : Divisibility theory, primes and their distribution, theory of congruences and application in security, integer representations, Fermat's Little Theorem and Euler's Theorem, primitive roots, quadratic reciprocity, and introduction to cryptography	

	Math 4388 - History of Mathematics	
Prerequisites:	rerequisites: MATH 3333	
Text(s):	No textbook is required. Instructor notes will be provided	

	This course is designed to provide a college-level experience in history of mathematics. Students will understand some critical historical mathematics events, such as creation of classical Greek mathematics, and development of calculus; recognize notable mathematicians and the impact of their discoveries, such as Fermat, Descartes, Newton and Leibniz, Euler and Gauss; understand the development of certain mathematical topics, such as Pythagoras theorem, the real
	number theory and calculus.
	Aims of the course: To help students
	to understand the history of mathematics;
	to attain an orientation in the history and philosophy of mathematics;
	to gain an appreciation for our ancestor's effort and great contribution;
	to gain an appreciation for the current state of mathematics;
	to obtain inspiration for mathematical education,
	and to obtain inspiration for further development of mathematics.
Description:	On-line course is taught through Blackboard Learn, visit http://www.uh.edu/webct/ for information on obtaining ID and password.
	The course will be based on my notes.
	Homework and Essays assignement are posted in Blackboard Learn. There are four submissions for homework and essays and each of them covers 10 lecture notes. The dates of submission will be announced.
	All homework and essays, handwriting or typed, should be turned into PDF files and be submitted through Blackboard Learn. Late homework is not acceptable.
	There is one final exam in multiple choice.
	Grading: 35% homework, 45% projects, 20 % Final exam.

	Math 4389 - Survey of Undergraduate Mathematics
Prerequisites:	MATH 3331, MATH 3333, and three hours of 4000-level Mathematics.
Text(s):	No textbook is required. Instructor notes will be provided

{back to Senior Courses}

	Math 4397 - Selected Topics in Math - TBD	
Prerequisites:	MATH 3333 or consent of instructor	
Text(s):	TBD	
Description:	Selected topics in Mathematics	

{back to Senior Courses}

	Math 4397 - Selected Topics in Math - TBD
Prerequisites:	MATH 3333 or consent of instructor
Text(s):	TBD
Description:	Selected topics in Mathematics

{back to Senior Courses}

ONLINE GRADUATE COURSES

MATH 5310 - History of Mathematics		
Prerequisites	:Graduate standing.	
Text(s):	Instructor's notes	
Description:	Mathematics of the ancient world, classical Greek mathematics, the development of calculus, notable mathematicians and their accomplishments.	

MATH 5331 - Linear Algebra w/Applications		
Prerequisites	s: Graduate standing.	
	Linear Algebra Using MATLAB, Selected material from the text Linear Algebra and Differential Equations Using Matlab by Martin Golubitsky and Michael Dellnitz) The text will made available to enrolled students free of charge.	
Text(s):	Software: Scientific Note Book (SNB) 5.5 (available through MacKichan Software, http://www.mackichan.com/)	
	Syllabus: Chapter 1 (1.1, 1.3, 1.4), Chapter 2 (2.1-2.5), Chapter 3 (3.1-3.8), Chapter 4 (4.1-4.4), Chapter 5 (5.1-5.2, 5.4-5-6), Chapter 6 (6.1-6.4), Chapter 7 (7.1-7.4), Chapter 8 (8.1)	
	Project : Applications of linear algebra to demographics. To be completed by the end of the semester as part of the final.	
Description:	Solving Linear Systems of Equations, Linear Maps and Matrix Algebra, Determinants and Eigenvalues, Vector Spaces, Linear Maps, Orthogonality, Symmetric Matrices, Spectral Theorem.	
	Students will also learn how to use the computer algebra portion of SNB for completing the project.	

	MATH 5333 - Analysis
Prerequisites:	Graduate standing and two semesters of Calculus.
Text(s):	Analysis with an Introduction to Proof Edition: 5, Steven R. Lay, 9780321747471
Description	A survey of the concepts of limit, continuity, differentiation and integration for functions of one variable and functions of
Description:	several variables; selected applications.

{back to Online Courses}

MATH 5382 - Probability	
Prerequisites	Graduate standing. Instructor's prerequisite: Calculus 3 (multi-dimensional integrals), very minimal background in
	Probability.
	Sheldon Ross, A First Course in Probability (10th Edition)

Description:		This course is for students who would like to learn about Probability concepts; I'll assume very minimal background in probability. Calculus 3 (multi-dimensional integrals) is the only prerequisite for this class. This class will emphasize
	practical aspects, such as analytical calculations related to conditional probability and computational aspects of	
	•	probability. No measure-theoretical concepts will be covered in this class. This is class is intended for students who want to learn more practical concepts in probability. This class is particularly suitable for Master students and non-math
		majors.

	MATH 5397 - Partial Differential Equations
Prerequisites	:Graduate standing. Instructor's prerequisite: TBA
Text(s):	ТВА
Description:	ТВА

GRADUATE COURSES

	MATH 6302 - Modern Algebra I
Prerequisites	: Graduate standing.
	Required Text: Abstract Algebra by David S. Dummit and Richard M. Foote, ISBN: 9780471433347
Text(s):	This book is encyclopedic with good examples and it is one of the few books that includes material for all of the four main topics we will cover: groups, rings, field, and modules. While some students find it difficult to learn solely from this book, it does provide a nice resource to be used in parallel with class notes or other sources.

	We will cover basic concepts from the theories of groups, rings, fields, and modules. These topics form a basic foundation	
Description:	in Modern Algebra that every working mathematician should know. The Math 63026303 sequence also prepares	
	students for the department's Algebra Preliminary Exam.	

{back to Graduate Courses}

	MATH 6308 - Advanced Linear Algebra I
Prerequisites	Catalog Prerequisite : Graduate standing, MATH 2331 and a minimum of 3 semester hours transformations, eigenvalues and eigenvectors. : Instructor's Prerequisite: MATH 2331 , or equivalent, and a minimum of three semester hours of 3000-4000 level Mathematics.
Text(s):	Linear Algebra, Fourth Edition, by S.H. Friedberg, A.J Insel, L.E. Spence, Prentice Hall, ISBN 0-13-008451-4
Description:	Catalog Description : An expository paper or talk on a subject related to the course content is required. Instructor's Description: The course covers the following topics: vector spaces, subspaces, linear combinations, systems of linear equations, linear dependence and linear independence, bases and dimension, linear transformations, null spaces, ranges, matrix rank, matrix inverse and invertibility, determinants and their properties, eigenvalues and eigenvectors, diagonalizability.

	MATH 6312 - Introduction to Real Analysis
Prerequisites: In de	Graduate standing and MATH 3334.
	In depth knowledge of Math 3325 and Math 3333 is required.
	Real Analysis, by N. L. Carothers; Cambridge University Press (2000), ISBN 978-0521497565

Description:	This first course in the sequence Math 4331-4332 provides a solid introduction to deeper properties of the real numbers, continuous functions, differentiability and integration needed for advanced study in mathematics, science and engineering. It is assumed that the student is familiar with the material of Math 3333, including an introduction to the real numbers, basic properties of continuous and differentiable functions on the real line, and an ability to do epsilon-delta proofs.	
	Topics : Open and closed sets, compact and connected sets, convergence of sequences, Cauchy sequences and completeness, properties of continuous functions, fixed points and the contraction mapping principle, differentiation and integration.	

{back to Graduate Courses}

	MATH 6320 - Theory Functions of a Real Variable	
Prerequisites:	Graduate standing and Math 4332 (Introduction to real analysis).	
Text(s):	Real Analysis: Modern Techniques and Their Applications Edition: 2, by: Gerald B. Folland, G. B. Folland.	
Text(S):	ISBN: 9780471317166	
	Math 6320 / 6321 introduces students to modern real analysis. The core of the course will cover measure, Lebesgue	
Description:	integration, differentiation, absolute continuity, and L^p spaces. We will also study aspects of functional analysis, Radon	
	measures, and Fourier analysis.	

{Top of page}

MATH 6322 - Function Complex Variable		
Prerequisites	Prerequisites: Graduate standing and MATH 4331	
Text(s):	TBD	
Description:	Geometry of the complex plane, mappings of the complex plane, integration, singularities, spaces of analytic functions,	
Description:	special function, analytic continuation, and Riemann surfaces.	

Prerequisites	:Graduate standing and MATH 4331
	 Robert McOwen, "Partial Differential Equations, Methods and Applications", 2nd Ed. (2004)
Text(s):	
	• Lawrence C. Evans, "Partial Differential Equations, Graduate studies in Mathematics 19.2 (1998)
	Existence and uniqueness theory in partial differential equations; generalized solutions and convergence of approximate solutions to partial differential systems.
Description:	This course introduces four main types of partial differential equations: parabolic, elliptic, hyperbolic and transport equations. The focus is on existence and uniqueness theory. Maximum principles and regularity of solutions will be considered. Other concepts that will be explored include weak formulations and weak solutions, distribution theory, fundamental solutions. The course will touch on applications and a brief introduction to numerical methods: finite differences, finite volume, and finite elements.

```
{back to Graduate Courses}
```

	MATH 6342 - Topology		
Prerequisites:	Catalog prerequisite: Graduate standing. MATH 4331. Instructor's prerequisite: Graduate standing. MATH 4331 or consent of instructor		
Text(s):	(Required) Topology, A First Course, J. R. Munkres, Second Edition, Prentice-Hall Publishers. link to text		

Description:	Catalog Description : Point-set topology: compactness, connectedness, quotient spaces, separation properties, Tychonoff's theorem, the Urysohn lemma, Tietze's theorem, and the characterization of separable metric spaces Instructor's Description : Topology is a foundational pillar supporting the study of advanced mathematics. It is an elegant subject with deep links to algebra and analysis. We will study general topology as well as elements of algebraic topology (the fundamental group and homology theories).
	Though traditionally viewed as a pure subject, algebraic topology has experienced a renaissance in recent years with the emergence of applied algebraic topology. To wit, SIAM has recently launched a new journal on applied algebra and geometry.

Г

{back to MSDS Courses}

	MATH 6350 - Statistical Learning and Data Mining		
Prerequisites:	Graduate Standing and must be in the MSDS Program. Undergraduate Courses in basic Linear Algebra and basic		
	descriptive Statistics		
Text(s):	 Recommended text: Reading assignments will be a set of selected chapters extracted from the following reference text: Introduction to Statistical Learning w/Applications in R, by James, Witten, Hastie, Tibshirani (This book is freely available online). ISBN: 9781461471370 "Neural Networks with R" by G. Ciaburro. ISBN: 978-1788397872 		

	Summary : A typical task of Machine Learning is to automatically classify observed "cases" or "individuals" into one of several "classes", on the basis of a fixed and possibly large number of features describing each "case". Machine Learning Algorithms (MLAs) implement computationally intensive algorithmic exploration of large set of observed cases. In supervised learning, adequate classification of cases is known for many training cases, and the MLA goal is to generate an accurate Automatic Classification of any new case. In unsupervised learning, no known classification of cases is provided, and the MLA goal is Automatic Clustering, which partitions the set of all cases into disjoint categories (discovered by the MLA).	
	Numerous MLAs have been developed and applied to images and faces identification, speech understanding, handwriting recognition, texts classification, stock prices anticipation, biomedical data in proteomics and genomics, Web traffic monitoring, etc.	
	This MSDSfall 2019 course will successively study :	
Description:	1) Quick Review (Linear Algebra) : multi dimensional vectors, scalar products, matrices, matrix eigenvectors and eigenvalues, matrix diagonalization, positive definite matrices	
	2) Dimension Reduction for Data Features : Principal Components Analysis (PCA)	
	3) Automatic Clustering of Data Sets by K-means algorithmics	
	3) Quick Reviev (Empirical Statistics) : Histograms, Quantiles, Means, Covariance Matrices	
	4) Computation of Data Features Discriminative Power	
	5) Automatic Classification by Support Vector Machines (SVMs)	
	Emphasis will be on concrete algorithmic implementation and testing on actual data sets, as well as on understanding importants concepts.	

	MATH 6357 - Linear Models and Design of Experiments	
Prerequisites	Graduate Standing and must be in the MSDS Program. MATH 2433, MATH 3338, MATH 3339, and MATH 6308	
Text(s):	Required Text: "Neural Networks with R" by G. Ciaburro. ISBN : 9781788397872	
INACCTINTIAN	Linear models with L-S estimation, interpretation of parameters, inference, model diagnostics, one-way and two-way ANOVA models, completely randomized design and randomized complete block designs.	

{back to MSDS Courses}

	MATH 6358 - Probability Models and Statistical Computing	
Prerequisites:	Graduate Standing and must be in the MSDS Program. MATH 3334, MATH 3338 and MATH 4378	
Text(s):	 Required: Probability with Applications in Engineering, Science, and Technology, by Matthew A. Carlton and Jay L. Devore, 2014. <i>Recommended:</i> Introductory Statistics in R, Peter Dalgaard, 2nd ed., Springer, 2008 <i>Recommended:</i> Introduction to Probability Models by Sheldon Axler 11th edition Lecture Notes 	

	Course Description: Probability, independence, Markov property, Law of Large Numbers, major discrete and continuous distributions, joint distributions and conditional probability, models of convergence, and computational techniques based on the above.
	<u>Topics Covered:</u>
Description:	 Probability spaces, random variables, axioms of probability. Combinatorial analysis (sampling with, without replacement etc) Independence and the Markov property. Markov chains- stochastic processes, Markov property, first step analysis, transition probability matrices. Longterm behavior of Markov chains: communicating classes, transience/recurrence, criteria for transience/recurrence, random walks on the integers. Distribution of a random variable, distribution functions, probability density function. Independence. Strong law of large numbers and the central limit theorem. Major discrete distributions- Bernoulli, Binomial, Poisson, Geometric. Modeling with the major discrete distributions. Important continuous distributions- Normal, Exponential. Beta and Gamma. Jointly distributed random variables, joint distribution function, joint probability density function, marginal distribution. Conditional probability- Bayes theorem. Discrete conditional distributions, continuous conditional distributions, conditional expectations and conditional probabilities. Applications of conditional probability.
	Software Used:
	Make sum to describe d D and DCtudie (which easily he is stalled with east D) he fam the easily a test built is he list.

- Make sure to download R and RStudio (which can't be installed without R) before the course starts. Use the link RStudio download to download it from the mirror appropriate for your platform.
- **New: Rstudio is in the cloud: RStudio.cloud.

Prerequisites: Graduate standing.

	No obligatory text. Dout of the meterial will be callested from Kan Devideon and Alex Densia, "Deal Analysis with
Text(s):	No obligatory text. Part of the material will be collected from Ken Davidson and Alan Donsig, "Real Analysis with Applications: Theory in Practice", Springer, 2009. Other sources on Applied Functional Analysis will complement the material.
	This course covers topics in analysis that are motivated by applications.
Description:	 Review of metric spaces, completeness, characterization of compactness, extreme value theorem. Contraction mappings and fixed points. Applications of contractions mappings: integral equations, solutions to initia value problems. Local existence and uniqueness of solutions, stability. Lp spaces as metric completions. Extending the Riemann integral to Lp spaces. Banach spaces. Dual spaces. Uniform boundedness. Consequences of uniform boundedness for Fourier series and polynomial interpolation. Uniform convexity, best approximation property and duality for Lp-spaces. Bounded inverse, closed graph theorem. Hilbert spaces. Orthonormal bases and their characterization. Characterization of best approximation by orthogonal projection. Fourier series. Convergence in L2 and pointwise convergence. Weak convergence. Nonlinear best approximations and (approximate) sparsity. Relationships between weak and norm convergence. Weak compactness in Hilbert spaces. Linear and convex programming in Hilbert spaces. Linear inverse problems. Sparse recovery by norm minimization. Linear inverse problems. Sparse recovery by norm minimization. The Hilbert-Schmidt norm and Hilbert-Schmidt operators. Compact self-adjoint operators. The spectral theorem for compact, self-adjoint operators. Solutions to Schrodinger's eigenvalue problem and compact integral operators. Introduction to the Calculus of Variations. Other topics in coordination with faculty.

	MATH 6366 - Optimization Theory	
Prerequisites	Graduate standing and MATH 4331 and MATH 4377 : Students are expected to have a good grounding in basic real analysis and linear algebra.	
Text(s):	"Convex Optimization", Stephen Boyd, Lieven Vandenberghe, Cambridge University Press, ISBN: 9780521833783 (This text is available online. Speak to the instructor for more details)	
Description:	The focus is on key topics in optimization that are connected through the themes of convexity, Lagrange multipliers, and duality. The aim is to develop a analytical treatment of finite dimensional constrained optimization, duality, and saddle point theory, using a few of unifying principles that can be easily visualized and readily understood. The course is divided into three parts that deal with convex analysis, optimality conditions and duality, computational techniques. In Part I, the mathematical theory of convex sets and functions is developed, which allows an intuitive, geometrical approach to the subject of duality and saddle point theory. This theory is developed in detail in Part II and in parallel with other convex optimization topics. In Part III, a comprehensive and up-to-date description of the most effective algorithms is given along with convergence analysis.	

MATH 6370 - Numerical Analysis	
Prerequisites	Graduate standing. Students should have knowledge in Calculus and Linear Algebra.
Text(s):	Numerical Mathematics (Texts in Applied Mathematics), 2nd Ed., V.37, Springer, 2010. By A. Quarteroni, R. Sacco, F. Saleri. ISBN: 9783642071010
Description:	The course introduces to the methods of scientific computing and their application in analysis, linear algebra, approximation theory, optimization and differential equations. The purpose of the course to provide mathematical foundations of numerical methods, analyse their basic properties (stability, accuracy, computational complexity) and discuss performance of particular algorithms. This first part of the two-semester course spans over the following topics: (i) Principles of Numerical Mathematics (Numerical well-posedness, condition number of a problem, numerical stability, complexity); (ii) Direct methods for solving linear algebraic systems; (iii) Iterative methods for solving linear algebraic systems; (iv) numerical methods for solving eigenvalue problems; (v) non-linear equations and systems, optimization.

	MATH 6374 - Numerical Partial Differential Equations	
Prerequisites	: Graduate standing, and MATH 6371	
Text(s):	TBA	
Description	Finite difference, finite element, collocation and spectral methods for solving linear and nonlinear elliptic, parabolic, and	
	hyperbolic equations and systems with applications to specific problems.	

{back to MSDS Courses}

	MATH 6380 - Programming Foundation for Data Analytics	
Prerequisites:	Graduate Standing and must be in the MSDS Program. Instructor prerequisites: The course is essentially self-contained. The necessary material from statistics and linear algebra is integrated into the course. Background in writing computer programs is preferred but not required.	
Text(s):	 "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython", by Wes McKinney, 2 edition, 2017, O'Reilly. (PD) Paper Book. ISBN 13: 9781491957660. <i>Available for free on Safari through UH library</i>. "Python for Everybody (Exploring Data in Python3)", by Dr. Charles Russell Severance, 2016, 1 edition, CreateSpace Independent Publishing Platform (PE) Paper Book. ISBN 13: 9781530051120 <i>Free online copy: https://books.trinket.io/pfe/index.html</i> 	
Description:	Instructor's Description: The course provides essential foundations of Python programming language for developing powerful and reusable data analysis models. The students will get hands-on training on writing programs to facilitate discoveries from data. The topics include data import/export, data types, control statements, functions, basic data processing, and data visualization.	

Prerequisites	Graduate standing and MATH 3334, MATH 3338 and MATH 4378 . Instructor's prerequisite : main notions in undergraduate Probability and undergraduate Linear Algebra &familiarity with either Matlab or Python or R (no software initiation in this course)	
Text(s):	Selected chapters in - An Intermediary Course in Probability Theory" by Allan Gut (any edition); free download - A first course in probability" by Sheldon Ross	

Basic Probability Concepts:

- Random Events and Probabilities on algebras of events,
- Independent Events and Conditional Probability,
- Borel-Cantelli lemma, Random variables,
- Probability Distribution,
- Expectation,
- Variance,
- CDF,
- Moments,
- Quantiles
- Description: Discrete Random Variables (examples): Binomial , Geometric, Poisson, ...
 - Density functions (examples) : Exponential, Gaussian, Chi2, Weisbull, Beta, ...
 - Random Vectors, Joint Probability Distribution, Joint Density, Marginal Density, Means, Covariances Matrices
 - Multinomial distribution, Multivariate Gaussian distributions
 - Law of Large Numbers, Central Limit theorem, Characteristic function
 - Stochastic Modeling : Simulation of Large Random Samples and applications
 - Markov Chains with finite state space, Transition matrix, Stationary distribution, Simulations
 - Applications : Hitting times , Gambler's Fortune
 - Poisson processes for time indexed occurrences of specific events
 - Applications : Stochastic Dynamics of Bacterial Populations

MATH 6397-01 (21255) - Python for Scientific Computation	
Prerequisites	: Graduate standing. Math 6370-6371
Text(s):	"Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control" 2nd Edition, Steven L. Brunton and J. Nathan Kutz

	Instructor's description : The goal of this class is to develop proficiency in implementing numerical methods in Python. In particular, this class will cover implementations of various numerical algorithms from Math 6370-6371 (Numerical Analysis) and more advanced topics from the book by Brunton and Kutz. Some topics might be taken out of Math 6374 (Numerical PDEs, but no finite elements) and Math 6366-6367 (Optimization). In addition, we might discuss deep learning and PyTorch if we have enough time and there is enough interest in the class.
Description:	The material will consist of two parts – covering more advanced Python topics (classes, modules, etc) and programming assignments implementing numerical methods. These two parts will be covered in parallel. A programming assignment will be given every 1-2 weeks. We will discuss the design of computational programs.
	I will answer general questions about your code, but I will not discuss details about your code or how to debug your code. All programming assignments will be submitted via OneDrive using shared folders.
	Grading – 75% homework, 25% final project, no exams

{back to Graduate Courses}

	Math 6397 (TBD) - Selected Topics in Math	
Prerequisites:	Graduate standing.	
Text(s):	ТВА	
Description:	ТВА	

MATH 6397-03 (21468) - Spatial Statistics	
Prerequisites: Graduate standing.	
Text(s):	ТВА
Description:	ТВА

	MATH 6397 (TBD) - Selected Topics in Math
Prerequisites:	Graduate standing.
Text(s):	ТВА
Description:	ТВА

{back to Graduate Courses}

MATH 7320 - Functional Analysis		
Prerequisites	: Graduate standing. MATH 6320 or consent of instructor.	
Text(s):	Walter Rudin, Functional Analysis, 2nd edition. McGraw Hill, 1991. (Instructor may suggest other tests or have their own typed notes)	
Description:	Catalog description : Linear topological spaces, Banach and Hilbert spaces, duality, and spectral analysis. Instructor's description: Topics covered in this first part of the course sequence include: Topological vector spaces; Completeness; Convexity; Spectral theory; etc. <i>See Instructor's syllabus for more details.</i>	

MATH 7350 - Geometry of Manifolds		
Prerequisites:	Graduate standing. MATH 3431 and MATH 3333	
Text(s):	ТВА	
Indecrintion	Manifolds and tangent bundles, submanifolds and imbeddings, integral manifolds, triangulation of manifolds, connections and holonomy; Riemannian geometry, surface theory, Morse theory, and G-structures.	

MATH 7397 - Numerical Linear Algebra - Data		
Prerequisites:	Graduate standing. MATH 3431 and MATH 3333	
Text(s):	ТВА	
Description	Manifolds and tangent bundles, submanifolds and imbeddings, integral manifolds, triangulation of manifolds, connections and holonomy; Riemannian geometry, surface theory, Morse theory, and G-structures.	