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DG for hyperbolic conservation laws
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- Hyperbolic conservation laws
Ut+V'f(U):0, (1)
u(x, t = 0) = up(x)

e u: conserved quantities
d
— [ udx =0.
dt/

e For example, Euler equations for fluid dynamics is a
system of three equations in the form of (1) with

e f: flux functions

u=(p,mE)

representing the conservation of mass, momentum and
energy of the system.
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Features of solutions for hyperbolic equations:

e solution is constant along characteristics

dx
= =
= W)

e when f(u) is linear, e.g. f(u)=u
— characteristics: % =
— linear advection of initial data from left to right with
speed 1.

e when f(u) is nonlinear, e.g. f(u) =u
— characteristics: % = u(x(t = t), t = 0)
— depending on the sign of initial data, characteristics go
to different directions
— when characteristics run into each other: development of

discontinuities even from smooth initial data

2
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Approximation space for DG

Define the approximation space as
vhk:{v:vy,jepk(/j); 1§j§N} (2)
based on a partition of the computational domain

[a b]—U/J—U[Xié J+%].
e k is the polynomial degree, h is the mesh size
e Functions in V,f‘ is in general discontinuous across the cell
boundaries.
e Note that solutions for hyperbolic problem might develop
discontinuities/shocks anyway.
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DG for hyperbolic equation

A semi-discrete DG ! formulation for 1-D hyperbolic problem
(1) is to find a piecewise polynomial function uj, € VK, s.t.

a
dt J,

A~ A

UthX = / f(Uh)VXdX — fj-'+1/2V|Xj+1/2 —+ 6_1/2V|Xj—1/2’ (3)

I

Vv € PX(I).

1Cockburn and Shu, 80's
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e The numerical flux function

A

fir1/2 = F(U) “111/2)’

is designed based on how information propagates along
characteristics. Especially,

F(1,1)

For example, Godunov flux, Lax-Friedrichs flux, - - -

e Strong stability preserving Runge-Kutta method is used to
evolve the solution in time.

©
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Implementation of

1. Choose a set of basis for P*(/;) on ;

X=X

{01(8), -, o ()}, €= —

For example
e monomials {1,¢,--- £k}
e Legendre polynomials

e nodal basis

{L;(§) = Lagrangian polynomial, =1,

DG

k1)
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2. Let
k+1

un(x £) = 3 Bi()i(€)

i=1
V:¢/(€)a I:15k+1
3. Let uj = (01, s i\lk+1),
W = fujm1, v, u541)
e.g. for linear problem (f(u) = u),

d, L

Euj h(AUj‘i‘BUjfl)

10
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Properties of DG

compact and flexible in handling complicated geometry
h-p adaptivity

maximum principle preserving limiters

L? stability for nonlinear problems

L2 error estimate for linear problems

super convergence

11
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L? stability of DG

L2 stability 2:
lun(T)I13 < llun(0)]3-
Specifically,
lun(THIIZ +©7(un) < [lun(0)]I3,
with

;
O (un) :a/o > _lun(D)]7, 1 dt.
J

a = max, |f'(u)].

2 Jiang and Shu, 90's
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e Error estimates of DG for linear
equation

Let e = u— uy

He(T)H2 < C”U0|’Hk+2hk+1

13/
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Superconvergence of DG

For linear problem

e Negative norm and post-processed solution (Cockburn et.

al. 2003)

e Radau projection and time evolution of error (Cheng and
Shu, 2008)

e Radau and downwind points (Adjerid et. al. 2001)

e Dispersion and dissipation error of physically relevant
eigenvalues in Fourier analysis (Ainsworth, 2004)

15
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Negative norm and post-processed
solution

e [2 norm
He(T)||2 < C||U0||Hk+2hk+1

e negative norm
He( T)Hf(kJrl) < HUOHHk+1h2k+1
with negative norm defined by

f uvdx

ul|l—j = Supyccee ————
[l T

e Post-processed solution via kernel convolution:
*
up = K * up

lu(T) — uj(T)llo < CH*

16
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Figure: (T = 0.1) of DG P? solution for linear advection equation.
N =10.

®Enhanced Accuracy by Post-Processing for Finite Element Methods for
Hyperbolic Equations, by Bernardo Cockburn, Mitchell Luskin, Chi-Wang
Shu and Endre Sli
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Figure: e(T = 0.1) of DG P? solution for linear advection equation.
N = 20.

“Enhanced Accuracy by Post-Processing for Finite Element Methods for
Hyperbolic Equations, by Bernardo Cockburn, Mitchell Luskin, Chi-Wang
Shu and Endre Sli

18



Superconvergence
of DG

Jingmei Qiu

-2 : : : : : : , . .

R —}++*+—+—++4+—+—+ ; :—¥—++++—+—+—+‘++
++

A

Figure: e(T = 0.1) of DG P? solution for linear advection equation.
lu— v = O(k+),

®Enhanced Accuracy by Post-Processing for Finite Element Methods for
Hyperbolic Equations, by Bernardo Cockburn, Mitchell Luskin, Chi-Wang
Shu and Endre Sli
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Radau projection

Let

e P, u be polynomials interpolating u at Radau points on
each element

e e=P, u—u

Then
[ )

1B(T)ll2 < A 2T (4)

le(T)ll2 < llu—Pyulla+[[&(T)]2
< GhF 4 G2 T (5)
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Table 25
The emrs 2 and o Example 1a when using * polynomials and SP intordr time discretizaton on 2 unform mesh of N el (L #01)
N Ta Te100 T+1000
I ertor Order [ertor Order [ertor Onder
¢ 0 417E-06 - J02E-05 - 199E-M -
4 26807 199 407 4% 038E-06 49
] 164E-08 40 J36E-08 486 1UE-07 500
160 102609 40 137E-09 461 991E-09 5
¢ 0 107E-04 - 111E-M - JI8E-0 -
40 1305 i 13E-05 105 163E-08 18
50 167E-06 0 167E-06 10 1.70E-06 B
160 20907 i J09E-07 0 209E-07 i

6Superconvergence and time evolution of discontinuous Galerkin finite
element solutions, by Yingda Cheng and Chi-Wang Shu

21
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e The numerical solution uj, is closer to P, u than to the
exact solution itself.
o When T = o(}), Goh**1 is the dominant term:
— time independent and of order k + 1.
o When T = O(%), Cth*2T is the dominant term:
— linearly grow with time and of order k + 2.
From equation (4), it is expected that € is on the order of k +2 = 4.

However, superior performance (5th order) is observed. Sharper
estimate is yet to be explored?
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Explore super convergence via Fourier analysis

23
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Fourier/Von Neumann analysis

is an approach to analyze stability and accuracy of
numerical schemes
is restrictive
e to problems with periodic b.c.
e to schemes with uniform mesh
may serve as

e a sufficient condition as instability of a numerical algorithm
e a guide for error estimate for more general setting
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Fourier analysis for linear equation

Consider linear equation

ur+u, =0, xe€[0,2x],t>0
u(x,0) = up(x), x € [0, 27]

In Fourier space, assume

u(x,t) = Z i, (t) exp(iwx)

w
then

d

aaw(t) + iwly,(t) = 0 = b,(t) = exp(—iwt)i,(0)

WLOG, consider a single mode exp(iwx).
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Fourier analysis for DG

Based on the assumption of uniform mesh and initial data
u(x,0) = exp(iwx), we assume on each element /;

u; = u(t)exp(iwx;). (6)

e u= (i, - 0ky1)" is the degree of freedom on each cell

e the spatial dependence is from exp(iwx;). Especially,
between neighboring cells, the difference is the ratio
exp(iwh).
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Substituting (6) into the DG scheme, the coefficient vector
satisfies the following ODE system

u'(t) = Gu(t),

where G is the amplification matrix of size (k + 1) x (k + 1)

G = %(A +Be %), &=wh.
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Let

e eigenvalues of G as

)‘17"’ a)\k—‘rl

e the corresponding eigenvectors as

Vi, Vi
Then
u(t) = CeMtVyi+- 4 G eV,
= MtV ... 4 Mkt Vit
where the coefficients G, - - - , Cx41 determined by the initial

condition and V, = G, V.

N
@
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Eigenvalues of G

(k+1) eigenvalues
e one of which is physically relevant, approximating iw with
high order accuracy ’

e order 2k + 1 dissipation error
e order 2k + 2 dispersion error

o k of which has large negative real part ( O(—1)).

— This indicates that the corresponding eigenvector will be
damped out exponentially fast.

Remark
Eigenvalues are independent of choices of basis in DG
implementation.

" Ainsworth, 04’
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o PL

Symbolic analysis on eigenvalues

AL = —ik — —h®+ O(h
1= ik =25k + O(h)

Azz—%+yk+ﬁh+ow%

/(6
A = —ik — ———h° + O(h°)

7200
A2:3tf§'+oa)
A3 = _?)_h\/EHI-i-O(l)

30
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o P3

A = —ik —7.1x 107 "kBh" + O(h®)
—0.42 + 6.61/

s = —0.42h— 6.61/ +o(1)
19.15
A =———+0(1)

h
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Eigenvectors of G

With Lagrangian basis functions based on Radau points on
each element,

Vi=O(h*2), 1=2---k+1

k+1

Vi —u(t = 0)]loc < Y | Villoo = O(h**?)
1=2

32
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o P!

Symbolic analysis on eigenvectors

ik 3 4
———h>+ O(h*)
162 s
Vo = = [[Valloo = O(h7)
Eh3 + O(h*)
54
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o P2 V3=

(153 + 408v/6 + i18y/34 T i29+/51) k* 4

2040000 "
(153 — 408v/6 F i18v/34 + Fi29+/51) k* y
2040000
_ ik* h4 + O(h5)
160+/51

O(h®)

+ O(h°)
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o P3

V, =

(2.13 x 107° +i1.19 x 107°)k>h° + O(h®)
(1.55 x 107% — /1.86 x 107°)k>h° + O(h®)
(—1.73 x 107% +/9.61 x 1076)k3h5 + O(h°)
(6.53 x 107° +i2.31 x 107%)k®h5 + O(K®)
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(—2.13 x 107% 4 i1.19 x 10~2)k3h5 + O(h°)
(—1.55 x 107% — i1.86 x 10~2)k3h5 + O(h°)

Vs =
(1.73 x 1075 +/9.61 x 107°)k>h® + O(K®)
(—6.53 x 107° 4 i2.31 x 107°)k°h°> + O(h°)
2.20 x 107°ik°h® + O(h°)
—1.09 x 107°ik>h° + O(h®)

Vs =

6.85 x 107 °ik5h® + O(h°)
—4.62 x 107%ik®h® + O(h®)

36/1
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Error of DG solution

Proposition

Consider DG with P (k < 3) solution space for linear
hyperbolic equation u; + ux = 0 with uniform mesh, periodic
boundary condition. Let i and i, be the point values of exact
and numerical solution at right Radau points respectively. Let
€ = U — dp. Then

1E(T)I| = O(h*F) T + O(h*2)

37
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é

(Ml

IN

IN

basis functions on each DG element,

[G(T) — dn(T)||

k+1
I(exp(iwT)i(0) = 3_ etV
=1
|(exp(iwT) — exp(A1 T)) V4|
k+1
+ Z |(exp(iwt) — exp(Ast)) V)|
1=2
lexp(iwT) — exp(A1L T)||| V1|
k+1
+ > (14 lexp(\t)) VA
1=2
k+1
O M T|Val+d (1 + exp(—f))HVIII
1=2

O(h2k+1)T+O(hk+2) 0O
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Remark

The error of the DG solution can be decomposed as two parts:

@ the dispersion and dissipation error of the physically
relevant eigenvalue; this part of error will grow linearly in
time and is of order 2k + 1

@® projection error, that is, there exists a special projection of
the solution (V1) such that the numerical solution is much
closer to the special projection of exact solution, than the
exact solution itself; the magnitude of this part of error
will not grow in time.
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Remark
©® When T = o(ﬁ), O(h**+2) is the dominant term: time
independent and of order k + 2.

® When T = O(7;), O(h**™) T is the dominant term:
linearly grow with time and of order 2k + 1.

40
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o The special projection V; is of order O(hk*?) close to the
Radau projection of the solution.

e However, the exact form of such special projection is not
known.

e To obtain Vi, one can use DG to integrate the solution to
2m. After time integration, the eigenvectors corresponding
to unphysical eigenvalues will be damped out
exponentially.

41
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Corollary

Consider DG with P* (k < 3) solution space for linear
hyperbolic equation u; + uy = 0 with uniform mesh, periodic
boundary condition. Let n be a positive integer.

l@n(2nm) — dp(2m) | = O(K***1)(n 1)

42
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Table: Linear advection us + uy = 0. The L? error and order of

Simulation results: DG solution for

ur+ u, =0

accuracy of & = |Jup(x, t = 4m) — up(x, t = 27)]|2. Uniform mesh.

Pl P2 P3
mesh | L error order | L error order | L error order
10 | 2.07E-02 - 8.35E-05 - 2.75E-06 -
20 | 2.66E-03 2.96 | 2.66E-06 4.97 | 450E-09 9.26
30 | 8.00E-04 2.97 | 3.,51E-07 5.00 | 8.97E-11 9.65
40 | 3.37E-04 3.00 | 8.34E-08 4.99 | 1.04E-11 7.48
50 1.73E-04 299 | 2.73E-08 5.00 | 2.11E-12 7.16
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Table: Linear advection u; + uy = 0. The L2 error and order of

accuracy of & = |lup(x,t = 6m) — up(x, t = 27)]]2. Uniform mesh.

Pl P2 P3
mesh | L error order | L? error order | L? error order
10 4.10E-02 - 1.67E-04 - 2.89E-06 -
20 5.32E-03 295 | 5.32E-06 4.97 | 5.75E-09 8.97
30 1.60E-03 2.97 | 7.02E-07 5.00 | 1.68E-10 8.72
40 6.74E-04 3.00 | 1.67E-07 4.99 | 2.08E-11 7.25
50 3.46E-04 2.99 | 5.46E-08 5.00 | 4.25E-12 7.13
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Table: Linear advection u; + uy = 0. The L2 error and order of

accuracy of &. Nonuniform mesh with 10% random perturbation.

Pl P2 P3
mesh | L? error order | L? error order | L? error order
10 4 22E-02 - 2.98E-04 - 4. 31E-06 -
20 2.70E-03 3.97 | 2.95E-06 6.66 | 3.79E-09 10.15
30 8.07E-04 2.98 | 3.88E-07 5.00 | 5.10E-10 4.95
40 3.40E-04 3.00 | 9.66E-08 4.83 | 1.62E-10 3.99
50 1.75E-04 299 | 2.97E-08 5.29 | 4.96E-11 5.30
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Figure: DG with P for linear hyperbolic problem. Left: error of DG
solution |u — up| at T = 4m; right: error of ||up(47) — up(27)]|.
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Figure: DG with P? for linear hyperbolic problem. Left: error of DG
solution |u — up| at T = 4m; right: error of ||up(47) — up(27)]|.
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Figure: DG with P2 for linear hyperbolic problem. Left: error of DG
solution |u — up| at T = 4m; right: error of ||up(47) — up(27)]|.
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DG solution for linear variable
coefficient equation

Consider

{ ur + (a(x)u)x = b(x,t), x € [0,2n]
u(x,0) = sin(x)

with
a(x) = sin(x) + 2,

b(x,t) = (sin(x) + 3) cos(x + t) + cos(x) sin(x + t),
and periodic boundary condition. The exact solution is
u(x, t) =sin(x + t).

SSPRK(5,4) is used for the time integration.

49
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Table: Linear variable coefficient problem. The L2 error and order of
accuracy of & = |lup(x,t = 47) — up(x, t = 27)]]2. Uniform mesh.

Pl P2 P3
mesh | L error order | L? error order | L? error order
20 5.00E-04 - 9.43E-07 - 8.70E-08 -
30 1.68E-04 2.68 | 1.24E-07 5.00 | 5.66E-09 6.74
40 7.37E-05 2.87 | 2.95E-08 5.00 | 7.42E-10 7.06
50 3.83E-05 2.93 | 9.67E-09 5.00 | 1.20E-10 8.17
60 2.23E-05 2.96 | 3.88E-09 5.00 | 2.26E-11 9.15
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DG solution for nonlinear problem

Consider

with periodic boundary condition.
b(x,t) = (14 3sin’(x + t)) cos(x + t)

The exact solution is u(x, t) = sin(x + t). SSPRK(5,4) is used
for the time integration.
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Table: Nonlinear Problem. The L? error and order of accuracy of &;.
Uniform mesh.

Pl P2 P3
mesh | L% error order | L% error order | LZ error order
20 7.91E-05 7.55E-06 - 7.90E-08

40 | 3.52E-06 4.49 | 2.17E-07 5.12 | 3.43E-09 4.53

60 | 492E-07 4.85 | 2.72E-08 5.12 | 6.22E-10 4.21

80 | 1.10E-07 5.21 | 457E-09 6.20 | 1.81E-10 4.29

100 | 3.25E-08 5.47 | 9.97E-10 6.82 | 6.65E-11 4.49
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Future work

Theoretical, rather than symbolic, proof of results.
Seek for the explicit form of special projection Vj.

Answers questions for non-uniform mesh and nonlinear
problem.

Extend this result to local DG.
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